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Extended Abstract

As robots begin to collaborate with humans in everyday
workspaces, they will need to understand the functions of
tools and their parts. To cut an apple or hammer a nail,
robots need to not just know the tool’s name, but they must
localize the tool’s parts and identify their functions. In this
extended abstract, we give an overview of our work on lo-
calizing and identifying object part affordance. We present
a framework which provides 3D predictions of functional
parts that can be used directly by a robot. We introduce
the RGB-D Part Affordance Dataset with 105 kitchen, work-
shop, and garden tools. We analyze the usefulness of differ-
ent features, and show that geometry is key for this problem.
Finally, we demonstrate that the approach can generalize
to novel object categories, so robots like PR2, Asimo, and
Baxter could use tools never seen before.

Imagine Baxter in a kitchen, trying to serve soup from
a pot into a bowl. Baxter needs to find a ladle, grab the
handle, dip the bowl of the ladle into the pot, and transfer
the soup to the serving bowl. But what if the ladle in this
kitchen has a different shape and color from the ladles that
Baxter has seen before? What if Baxter has never seen any
ladles at all? Today, computer vision allows robots to rec-
ognize objects from a known category, providing a bound-
ing box around the ladle. However, in these situations Bax-
ter needs to not just detect the ladle, but more importantly
he needs to know which part of the ladle he can grasp and
which part can contain the soup. As Gibson remarked, “If
you know what can be done with a[n] object, what it can be
used for, you can call it whatever you please” [3].

Gibson defined affordances as the latent “action possi-
bilities” available to an agent, given their capabilities and
the environment [3]. In this sense, for a human adult, stairs
afford climbing, an apple affords eating, and a knife affords
the cutting of another object. The last example is the most
relevant to a collaborative robot, so we use the term effec-
tive affordance to differentiate the affordances of tools from
those found in other settings. If robots could identify the
effective affordances of parts, then they could use a variety
of tools, even those they have never seen before.

Segmentation Based Affordance Identification. Man-
made tools are typically composed of parts, where each part
is a collection of surfaces that can provide some effective
affordance. We define a surface’s effective affordance by
the way it comes in contact with the objects that they affect.
For example, the inner surface of a coffee mug is “contain”
since it contacts the liquid that it holds, while the surface of
the handle is “grasp” because it can be held by a hand. Since
we consider the surfaces that make up object parts, we take
a segmentation based approach to affordance identification.
We use a modified SLIC [1], which incorporates depth and
surface normal information, to divide objects in an RGB-D
image into a smaller surface fragments.

Geometric Features for Affordance Identification. Our
goal is to predict the affordances of these surfaces from their
visual features, such as color or depth from a Kinect sensor.
We hypothesize that there is a deep relationship between
effective affordance and geometry of a part, since the geo-
metric and physical properties of object are closely tied to
the ways they can interact with the environment. There-
fore, we compare three geometric features: depth, normal,
and curvature. We use a hierarchical sparse coding tech-
nique, M-HMP [2], to extract representations for each of
the pixel-level feature types. Recent feature learing meth-
ods like [2, 8] have been shown to learn mid-level represen-
tations invariant to small deformations directly from data,
and have achieved state-of-the-art performance on several
computer vision tasks. Most importantly, a feature learning
approach provides am equal footing to evaluate each of the
different feature types.

Framework for Affordance Identification. Given an ob-
ject in an RGB-D image we divide it into a collection of sur-
faces using superpixel segmentation. For each superpixel,
we compute the M-HMP features of its pixels and aggre-
gate them using max-pooling. This gives a feature vector
for each surface that can be classified with a linear SVM.
Finally, we refine the predictions and introduce pairwise
information between segments by modeling the superpixel
neighborhood graph as a conditional random field. [5].
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Figure 1. Objects from the RGB-D Part Affordance Dataset. Each
column shows example objects with parts that share the same af-
fordance. The top and bottom rows show example training and
testing objects for the novel category setting, respectively.

RGB-D Part Affordance Dataset. We developed a new
dataset tailored to everyday tools and the affordances of
their parts. The dataset contains 105 kitchen, workshop,
and garden tools, and provides pixel-level affordance la-
bels for more than 10,000 RGB-D frames covering a full
360◦ range of views. These objects were collected from
17 different object categories with 7 affordances: grasp,
wrap-grasp, cut, contain, support, scoop, and pound. Ex-
amples of the five effective affordances are shown in fig-
ure 2. The dataset is also designed so that each affor-
dance is represented by objects from several categories,
which permits zero-shot or novel category test settings.
The dataset will be available at www.umiacs.umd.edu/
˜amyers/part-affordance-dataset.

Results. We first analyze the effectiveness of different
raw feature types in order to test our hypothesis that ge-
ometry is related to part affordance. As shown in figure 3,
we found that geometric features significantly outperform
appearance features for predicting most affordances. This
differs from recent results for RGB-D object recognition,
which found that visual features outperform geometric fea-
tures in instance and category recognition [6].

Following these results, we evaluate our framework by
testing on objects from known and novel categories. We
can see from table 1 that Geometry (depth, normal, and cur-
vature) is superior to Appearance (RGB and gray) for both
known and novel settings. Even more telling, combining all
features does not provide significant improvement, indicat-
ing that geometry is key for this task. While the CRF does
not give a quantitative improvement, we found that it is an
important step for producing an output useful to a robot.

Conclusions We introduced a novel problem of localiz-
ing and identifying part affordance, and a new dataset de-
signed to address it. We then proposed a framework to pre-
dict the affordance of parts for objects of known and com-
pletely novel categories. Finally, we showed that geometry
is critical for predicting affordance. This new dataset and
the failures and success of the proposed method open many
avenues for future research [7].
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Figure 2. Example results from our framework for known category
(top row) and novel category (bottom row) experimental settings.
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Figure 3. Comparison of different raw features for each affordance
type in the known category setting.

Appearance Geometry All All + CRF
Known 73.2± 3.5 86.5± 6.6 86.2± 5.6 86.5± 5.0

Novel 46.0 63.6 64.8 64.8
Table 1. Results for known and novel settings using appearance,
geometry, and all features, and finally the complete framework.
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