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Abstract— As robots begin to collaborate with humans in
everyday workspaces, they will need to understand the functions
of tools and their parts. To cut an apple or hammer a nail,
robots need to not just know the tool’s name, but they must
localize the tool’s parts and identify their functions. Intuitively,
the geometry of a part is closely related to its possible functions,
or its affordances. Therefore, we propose two approaches for
learning affordances from local shape and geometry primitives:
1) superpixel based hierarchical matching pursuit (S-HMP);
and 2) structured random forests (SRF). Moreover, since a part
can be used in many ways, we introduce a large RGB-Depth
dataset where tool parts are labeled with multiple affordances
and their relative rankings. With ranked affordances, we eval-
uate the proposed methods on 3 cluttered scenes and over 105
kitchen, workshop and garden tools, using ranked correlation
and a weighted F-measure score [26]. Experimental results over
sequences containing clutter, occlusions, and viewpoint changes
show that the approaches return precise predictions that could
be used by a robot. S-HMP achieves high accuracy but at a
significant computational cost, while SRF provides slightly less
accurate predictions but in real-time. Finally, we validate the
effectiveness of our approaches on the Cornell Grasping Dataset
[25] for detecting graspable regions, and achieve state-of-the-art
performance.

I. INTRODUCTION

Every day, we use tools for ordinary activities, like cutting
an apple, hammering a nail, or watering a flower. While
interacting with the world, we effortlessly draw on our
understanding of the functions that tools and their parts
provide. Using vision, we identify the functionality of parts,
so we can find the right tool for our needs. As robots like
PR2, Asimo, and Baxter begin to collaborate with humans
in everyday workspaces, they will also need to understand
the wide variety of tools useful for their tasks.

Imagine Baxter in a kitchen, trying to serve soup from
a pot into a bowl. Baxter needs to find a ladle, grab the
handle, dip the bowl of the ladle into the pot, and transfer
the soup to the serving bowl. But what if this ladle has a
different shape and color from the ladles that Baxter has
seen before? What if Baxter has never seen any ladles at all?
Today, computer vision allows robots to recognize objects
from a known category, providing a bounding box around
the ladle. However, in these situations Baxter needs to not
just detect the ladle, but more importantly he needs to know
which part of the ladle he can grasp and which part can
contain the soup. As Gibson remarked, “If you know what
can be done with a[n] object, what it can be used for, you
can call it whatever you please” [11].
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Fig. 1: Predicting novel affordances in clutter (top) and in single objects
(bottom). (Top) Detections of grasp, scoop and support in a cluttered
scene. (Bottom) Novel affordance predicted for mug: pound (left) and
turner (spatula): cut (right). Notice that we are able to predict and localize
reasonable locations for novel affordances, even in clutter and not just on
well-defined object parts, but on the relevant regions of the object (e.g. the
bottom of the mug affords pounding and the edge of the turner affords
cutting). Brighter regions indicate higher probability.

In this paper, we address the novel problem of localizing
and identifying part affordance, so that a robot can explain
how an object and its parts can be used, and generalize this
knowledge to novel scenarios. Outputs demonstrating this
generalization are shown in Fig. 1 where, for example, the
proposed approach is able to predict that the bottom of the
mug is useful for pounding, or the edge of a turner can be
used for cutting.

Gibson defined affordances as the latent “action possibil-
ities” available to an agent, given their capabilities and the
environment [11]. In this sense, for a human adult, stairs
afford climbing, an apple affords eating, and a knife affords
the cutting of another object. The last example is the most
relevant to a robot using tools in a kitchen or workshop,
and we use the term effective affordance to differentiate the
affordances of tools from those found in other settings. We



define objects with effective affordances as those that an
agent can use as tools to produce an effect on another object.
Man-made tools are typically composed of parts, where each
part has multiple effective affordances such as cut, pound,
scoop, or contain. If robots could identify these affordances,
it would open the possibility to use a wide variety of tools,
including those that have not been seen before.

From a computer vision perspective however, predicting
affordances from an image presents a major challenge be-
cause tools from different categories, with unique shapes
and appearances, can have parts with the same effective
affordances. Furthermore, our goal is to identify affordances
at the level of parts, and provide precise predictions for a
robot to interact with the world.

The main contributions of this paper are as follows: 1) We
introduce a framework for jointly localizing and identifying
part affordance, so that robots can understand how objects
and their parts can be used. We show that this approach can
be used to identify and localize part affordance for a large
collection of tools and in cluttered scenes with occlusions
(§V). 2) We use and compare two methods for learning
the association: a) an unsupervised feature learning method
which learns a hierarchy of sparse dictionaries (§III-B) and
b) a fast structured random forest classifier that preserves
the spatial information of the learned affordances at its leaf
nodes (§III-C). 3) We analyze the effectiveness of different
features for affordance identification, and demonstrate in
the experiments that geometric features, derived from a
combination of 2D and 2.5D data, are essential for the task
(§V-.1). 4) We present a new RGB-D Part Affordance Dataset
(§IV-A) which consists of 105 kitchen, workshop, and garden
tools. The dataset provides hand-labeled ground truth at the
pixel level for more than 10,000 RGB-D images. In addition
to images of single objects, a separate dataset of novel objects
in clutter is also available for evaluating the robustness of
affordance detection in real-world settings (Fig. 1 (top)).
Dataset and code from this work are available online1.

II. RELATED WORK

The study of affordance has a rich history in the com-
puter vision and robotics communities. Early work sought a
function-based approach to object recognition for 3D CAD
models of objects like chairs [33]. More recently, many
papers have focused on predicting grasping points for objects
from 2D images [30] [34] [5]. [25] exploits a deep learning
framework to learn graspable features from RGB-D images
of complex objects and [17] detects tips of tools being
held by a robot. From the computer vision community, [19]
classify human hand actions in context of the objects being
used, Grabner et al. [12] detect surfaces for sitting from 3D
data.

Affordances might be considered a subset of object at-
tributes, which have been shown to be powerful for object
recognition tasks as well as transferring knowledge to new
categories. Ferrari and Zisserman [10] learn color and 2D

1http://www.umiacs.umd.edu/˜amyers/part_affordance/

shape patterns to recognize the attributes in novel images.
Parikh and Grauman [29] show that relative attributes can
be used to rank images relative to one another, and Lampert
et al. [24] and Yu et al. [36] show that attributes can be
used to transfer knowledge to novel object categories. In
the robotics community, the authors of [35] identify color,
shape, material, and name attributes of objects selected in
a bounding box from RGB-D data. [14] explored, using
active manipulation of different objects, the influence of
the shape, material and weight in predicting good pushable
locations. [2] used a full 3D mesh model to learn so-called 0-
ordered affordances that depend on object poses and relative
geometry. Koppula et al. [22] view affordance of objects
as a function of interactions, and jointly model both object
interactions and activities via a Markov Random Field using
3D geometric relations (‘on top’, ‘below’ etc.) between the
tracked human and object as features.

Recently, unsupervised feature learning approaches have
been applied to problems with 3D information. [3] propose
using hierarchical matching pursuit (HMP), and [32] propose
using a convolutional recursive neural network to recognize
objects from RGB-D images. For supervised methods, state-
of-the-art performance using structured random forests [21]
applied over RGB-D data for simultaneous object segmen-
tation and recognition has been reported in [13].

III. APPROACH

In this paper we compare two approaches for associating
part affordances with geometric features extracted from
RGB-D images. The first approach builds upon the recent
work of [4] which uses multipath HMP (§III-B) to achieve
state-of-the-art performance on challenging computer vision
image datasets. The second approach leverages the fast
inference of structured random forests (SRF) (§III-C) to
detect part affordances in real-time. In contrast to previous
works that require accurate metric models [2] or predict
attributes for segmented objects [35], we show that local
geometric primitives are sufficient for pixel accurate func-
tionality detection compared to those discovered via deep
learning (which returns only a bounding box) [25], resulting
in a more efficient and simple implementation suitable for
robotic applications. Finally, we also demonstrate the robust-
ness of the approaches in challenging real-world situations
containing clutter, occlusions and viewpoint changes which
were not explored in prior works. We first describe in the
next section the features used in our approach, derived from
a combination of 2D and 2.5D information, that allow us
to capture the local geometry of the surface for affordance
association. We then detail the two approaches for learning
this association from these features.

A. Robust Geometric Features

The key hypothesis of this work is that shape and ge-
ometry are physically grounded qualities which are deeply
tied to the affordances of a tool part. When characterizing
geometric qualities of a part, it is important that the features
we compute are robust to variations, such as changes in
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viewpoint. At the same time, we would like to gain insight
into the influence of basic geometric measures. Therefore, we
leverage simple geometric features, such as surface normals
and curvature, to learn the relationship between geometry and
part affordance. In order to detect affordances for a variety
of tools in cluttered scenes with occlusions, we derive the
following local geometric features from small N×N RGB-D
input patches:

1) Depth Features: We first apply smoothing and inter-
polation operators to reduce noise and missing depth values.
Then, we remove the mean from the patch to gain robustness
to absolute changes in depth. These patches are used directly
by HMP to learn hierarchical sparse code dictionaries. In
the first layer, HMP captures primitive structures such as
depth edges at various orientations, and higher layers en-
code increasingly abstract representations [3]. To provide
comparable depth edge information to the SRF, we compute
histograms over depth gradients (HoG-Depth). Similar to the
2D Histogram of Gradients (HoG) image descriptor [7], we
compute gradients on the depth image and quantize them
into four orientations to create a compact histogram feature.

2) Surface normals (SNorm): We use the depth camera’s
intrinsic parameters to recover the 3D point cloud, from
which we can estimate 3D surface normals. As with the
depth, we remove the patch mean during feature learning, to
make the representation more robust to changes in viewpoint.

3) Principle curvatures (PCurv): The principle curvatures
[8] are an extrinsic invariant of the local patch geometry,
and are independent of viewpoint. The principal curvatures
(κ1, κ2), κ1 > κ2 characterize how the surface bends in
different directions.

4) Shape-index and curvedness (SI+CV): The shape index
(SI) and curvedness (CV) measures were introduced by
Koenderink et al. [20] to characterize human perception of
shape. These measures, which are derived from (κ1, κ2), are
also viewpoint invariant and are defined as

SI = − 2

π
arctan

(
κ1 + κ2
κ1 − κ2

)
, CV =

√
κ21 + κ22

2
(1)

SI and CV are continuous in the range [−1,+1], where
the shape index captures the type of local shape (elliptic,
parabolic, etc.) and the curvedness its perceived strength.

B. Superpixel Hierarchical Matching Pursuit

We first propose a superpixel based approach to affor-
dance detection following the work of [27]. Although 2D
image segmentation in general is a challenging problem in
computer vision, recent work has shown that incorporating
depth data produces more coherent boundaries that adhere to
depth discontinuities not apparent in color images [31] [28].
Usually, great care must be taken to find segments that have
not oversegmented or undersegmented an object of interest
[16]. However, in our approach we consider tools composed
of several parts, each formed by a collection of surfaces, so
oversegmentation is advantageous.

Given an RGB-D image, we use a modified version of
the SLIC algorithm [1], incorporating depth and surface
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Fig. 2: Affordance detection using S-HMP. An RGB-D image is segmented
into superpixels, where each segment serves as a candidate part surface
(left). For each superpixel, hierarchical sparse codes are extracted from ge-
ometric features such as depth, normal, and curvature information (middle).
Superpixels’ codes are pooled and then classified using a linear SVM to
produce the final predictions for each affordance (right).

normal information, to segment objects in the RGB-D image
into small surface fragments. Using multiple features for
segmentation is important, since parts with different affor-
dances are often connected and share some properties. For
each superpixel, we use HMP to compute hierarchical sparse
codes from each of the different geometric measures (Depth,
SNorm, PCurv, and SI+CV).

HMP [3] is a hierarchical sparse coding method that
learns feature hierarchies called paths. A path has a unique
architecture which captures information at varying scales and
abstractions, where in each layer of the hierarchy the input
is encoded by sparse coding and undergoes a max-pooling
operation. Specifically, at each layer we learn a dictionary D
of size m such that the n samples in data matrix Y can be
represented by a sparse linear combination X of dictionary
entries,

min
D,X
‖Y −DX‖2F

s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ S
(2)

where ‖·‖F and ‖·‖0 denote the Frobenius norm and L0 norm
respectively, S is the sparsity regularization parameter. The
dictionary bases dm are constrained to have a unit norm,
and a sample’s sparse coefficients xn must have no more
than S non-zero values. Given a learned dictionary, an image
patch can be represented by its coefficients or sparse codes.
In previous works, on image attribute recognition [35] or
image classification [4], these codes were max-pooled over
the whole image or over an image pyramid. However, we
max-pool HMP features within each superpixel, which yields
a feature vector for each surface. These features can be clas-
sified with a linear SVM, thereby providing a prediction of
each affordance for each segment. The proposed framework
is illustrated in figure 2. In our experiments we use features
from two-layer and three-layer architectures, which capture
features at different scales and abstractions. Additional de-
tails and parameters are provided in the publicly available
code.

C. Structured Random Forest

The random forest (RF), introduced by [15], is an en-
semble learning technique that combines K decision trees,
(T1, · · · , TK), trained over random permutations of the data



Fig. 3: Affordance detection using SRF. (A) Input image with example
patch highlighted. (B) Features extracted from each patch (top) and sampled
annotation patches from data (below). (C) Training different patches, X
with corresponding binary affordance annotations, Y , learns the optimal θj
at each split node. The leaf nodes store per pixel confidence scores for each
Y encountered. (D) During inference, a test patch is assigned to a leaf node
that contains affordance prediction. Averaging the predictions over the K
trees produces an affordance confidence score per pixel.

to prevent overfitting. The output of the model can either be
a class label (for multilabel classification) or a continuous
value (for regression). The main advantage of RFs is that
inference is extremely efficient [6], since data only needs to
be passed through several binary decision functions. Due to
their speed and flexibility, RFs have been widely applied in
both computer vision and robotics problems.

In this work, we propose the second approach using a
structured random forest (SRF), an extension of the standard
RF that imposes structured constraints on the input and
output. This enables the SRF to learn more expressive
information, while still retaining all the inherent advantages
of standard RFs. SRFs was first used by [21] to impose
spatial constraints for scene segmentation and was recently
extended by [9] for 2D edge detection. Different from these
previous works, we impose here a novel structure that relates
affordances to the local patch geometry and shape. To this
end, we train a SRF that takes as input X , features from
local N ×N patches described in §III-A with pixel accurate
annotations of the target affordance, Y (Fig. 3 (B)). The
annotations impose the expected spatial structure of how
the affordance should appear in the final prediction. For the
jth split (internal) node, we train a binary decision function
h(x, θj) ∈ {0, 1} over random subsets, x ∈ X , of the input
features so that the parameters θj = (f, ρ) send x(f) (where
f is the feature dimension for each feature described in §III-
A) to the left child when h(·) = 1 if [x(f) < ρ] and to the
right child otherwise. The decision threshold, ρ, is obtained
by maximizing a standard information gain criterion Gj over
Dj ⊂ X × Y , the features and annotations:

Gj = H(Dj)−
∑

c∈{L,R}

|Dcj |
|Dj |

H(Dcj) (3)

where Dc
j , c ∈ {L,R} indicates the portion of the data that is

split by ρ into the left and right child nodes respectively. We
use here the Gini impurity measure: H(Dj) =

∑
y py(1−py)

with py denoting the proportion of features in Dj with own-
ership label y ∈ Y . Eq. (3) is computed via an intermediate
mapping Π : Y 7→ L of structured affordance labels into
discrete labels l ∈ L following [9]. To determine Π, we
first cluster via k-means random annotation patches that have

the same affordance labels and select the largest |L| cluster
centers. We repeat the training procedure until a maximum
tree depth, Dt, is reached and we store at the leaf nodes
per pixel confidence scores for each affordance annotation
patch encountered during training. (Fig. 3 (C)). Each tree
in the SRF therefore learns jointly, the 2D spatial structure
together with the 2.5D features that describe the affordance
within a patch. Inference using the trained SRF is extremely
simple. Given a forest of K trees and a testing patch with
extracted features, the learned decision thresholds in each
split node will send the patch to a leaf node that contains
the predicted affordance labeling and confidence scores. We
then average all K predictions for the final prediction (Fig. 3
(D)).

In our implementation, we train a SRF with K = 8 trees
with a maximum training depth of Dt = 64. We use patches
of size N = 16 and we set |L| = 10 cluster centers for Π.
Training over the entire affordance RGB-D dataset (§IV-A)
in parallel with an average of 5000 RGB-D images per split
takes around 20 minutes on a 16 core Xeon 2.9GHz machine
with 128GB of ram. Inference for a single RGB-D image of
size (640 × 480) (height, width), takes an average of 0.1s
which includes the time for feature extraction.

IV. EXPERIMENTS

We first describe in §IV-A the affordance dataset that we
introduce to evaluate the proposed approaches. We present
the evaluation metrics used for all experiments in §IV-B.
We also detail in §IV-C how we apply our approaches to
the more common task of predicting grasping locations, in
order to compare with the deep-learning approach of [25].
We present and discuss the results of our experiments in §V.

A. RGB-D Part Affordance Dataset

To investigate the problem of localizing and identifying
affordance, we propose a new RGB-D Part Affordance
Dataset which focuses on everyday tools and the affordances
of their parts. We consider tool parts corresponding to a
collection of surfaces with multiple affordances. We define
each surface’s effective affordances by the way it comes in
contact with the objects it affects. For example, a coffee
mug has two affordance parts, the inner surface and the
outer surface. The inner surface of a mug has the effective
affordance “contain”, because it comes in contact with the
liquid that is contained. The surface of the mug’s handle has
the affordance “grasp” as it can be tightly held by a hand
or robot gripper. The dataset provides pixel-level affordance
labels for 105 kitchen, workshop, and garden tools. The tools
were collected from 17 different categories covering seven
affordances which are summarized in Table. I.

Each affordance is represented by objects from a variety of
categories with different appearances. Additionally, since it
is likely that object parts may have multiple affordances, we
engaged several human annotators to rank how close affor-
dances are with respect to the essential affordance category,
while allowing for ties. This allows us to determine, on an
ordinal scale, how well the affordance detector generalizes



Fig. 4: Sample objects from the RGB-D Part Affordance Dataset. (Lower-
right) An example of a full frame image with hand-labeled ground truth.
The ground truth labels include rankings for multiple affordances.

Affordance Description
grasp Can be enclosed by a hand for manipulation (handles).
cut Used for separating another object (the blade of a knife).
scoop A curved surface with a mouth for gathering soft material (trowels).
contain With deep cavities to hold liquid (the inside of bowls).
pound Used for striking other objects.(the head of a hammer).
support Flat parts that can hold loose material (turners/spatulas).
wrap-grasp Can be held with the hand and palm (the outside of a cup).

TABLE I: Description of the seven affordance labels.

to related affordances which is important when novel objects
are observed. For example, parts with the affordance “cut”
are found in kitchen knives, workshop saws, and garden
shears. Examples are shown in Fig. 4.

While there are several RGB-D object datasets, most are
designed for instance and category level object recognition
[23], attribute learning [35] or for specific robotic grip-
ping locations [25]. In addition to testing with tools from
a known category, the dataset is designed for evaluating
part affordance identification for objects from completely
novel categories. To our knowledge this is the first dataset
specifically designed for robots to identify and localize part
affordances from RGB-D data.

Data was collected using a Kinect sensor, which records
RGB and depth images at a resolution of 640×480 pixels.
Since many of the parts we want to capture are small, we
collected data at the minimum distance required for accurate
depth readings, approximately 0.8 meters. We recorded each
tool on a revolving turntable to collect images covering a full
360◦ range of views. On average, approximately 300 frames
are captured for each tool, producing more than 30,000 RGB-
D image pairs. Of these, more than 10,000 images have
pixel-level ground truth affordance labels. In addition, we
supplement the dataset with three sequences of around 1000
RGB-D frames, each collected by a mobile robot observing
novel tools in clutter under changing viewpoints. Example
frames are shown in Fig. 5 (left).

B. Evaluation Metrics

We use three evaluation metrics to provide different per-
spectives on the performance of our approaches over the
RGB-D Part Affordance dataset. The proposed approaches
output a probability map over the image for each affordance,
which can be evaluated against ground truth labels to fairly
compare their performance. First, we use the Weighted F-
Measure, Fwβ , introduced recently by Margolin et al. [26]
to evaluate saliency maps with continuous valued responses
against binary valued ground-truths. Fwβ is an extension of

the well-known F-measure Fβ2:

Fwβ = (1 + β2)
Prw.Rcw

β2.P rw +Rcw
,with β = 1 (4)

where Prw and Rcw are weighted versions of the standard
precision Pr = TP

TP+FP and recall Rc = TP
TP+FN measures.

Here, TP, TN,FP, FN refer to true positives, true nega-
tives, false positives and false negatives respectively. The
key insight from [26] is to extend the standard precision
and recall measures with weights derived by comparing the
binary ground-truth and the continuous valued responses in
order to reduce biases inherent in the standard measures.
To do this, the authors proposed weights that measure the
dependency of foreground pixels (pixels clustered together
near the ground-truth are weighted higher), and assign lower
weights to pixels far from the ground-truth.

Since the ground-truth in the RGB-D Affordance dataset
provides rankings across multiple affordances, for a second
measure we define a rank weighted Fwβ ,

Rwβ =
∑
r

wr.F
w
β (r),with

∑
r

wr = 1 (5)

that sums weighted Fwβ (r) over their corresponding r ranked
affordances. The ranked weights wr are chosen so that the
top ranked affordance is given the most weight, followed by
the secondary affordance and so on. This allows us to capture
if the detector is generalizing across multiple affordances
appropriately. Note that when we impose w1 = 1, (5) reduces
to (4), where we consider only the top ranked affordance.

Finally, we use a third measure to evaluate whether
multiple affordance predictions agree with the ground-truth
rankings. We rank the continuous affordance predictions
at each pixel, and compute the ranked correlation score,
Kendall’s τk ∈ [−1, 1] [18]. τk approaches 1 as the predicted
ranks agree more closely with the ground-truth, but nears -1
as the ranks are reversed. We report τk ∈ [−1, 1], the average
τk of all pixels over the test images.

C. Cornell Grasping Dataset Comparison

In addition to the RGB-D Part Affordance Dataset, we ap-
plied our approaches to a more common, but related robotic
task of determining where to grasp (a specific affordance).
We used the recently introduced Cornell Grasping Dataset
of Lenz et al. [25] to compare against their deep-learning
method and validate the effectiveness of our approaches.
The dataset contains 1035 RGB-D images of 280 graspable
objects, where objects are captured from a small discrete
number of viewpoints. Each image contains a single object,
and is annotated with a set of rectangles indicating good
or bad graspable locations. Following the testing procedure
in [25], we averaged results from 5 random splits, and
report both recognition accuracy and detection accuracy. For
detection, we report the point-wise metric following [25] and

2The F-measure with β = 1 is defined by the harmonic mean of the
precision and recall values: Fβ = (1 + β2). Pr.Rc

β2.Pr+Rc
and is used as a

measure of the accuracy of the Pr and Rc scores. β is a positive weight
that gives preferences to either Rc (β > 1) or Pr (β < 1).
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Fig. 5: Results of affordance detection across three different input RGB-D frames (left) using S-HMP (middle) and SRF (right) over the cluttered sequence:
two target affordances per method – contain (l) and wrap-grasp (r). Brighter means higher probability of the target affordance.

[30], which considers the detection a success if it is within
some distance from at least one ground-truth rectangle center.
In order to use S-HMP in this setting, we treat the candidate
rectangles as superpixel segments, and perform max-pooling
over the rectangle to make a prediction. To obtain structured
labels for the SRF, we estimated the ground-truth annotations
of graspable regions by first applying a mask obtained over
all graspable rectangles followed by a edge detection and
hole filling operation (Fig. 6). We trained S-HMP and SRF
using the same parameters used in other experiments.

Fig. 6: Estimating pixel accurate annotations from the Cornell Grasping
Dataset. (Left) Input RGB image. (Middle) Overlay of several graspable
rectangles. (Right) Edge detection and hole filling produces a pixel accurate
segment.

V. RESULTS

We report results that demonstrate the performance of
our approach using the proposed metrics described above:
(Fwβ , R

w
β , τk) for affordance detectors trained using S-HMP

and SRF. We used the same train/test splits for both methods,
and report averaged results over random splits of the RGB-
D Affordance Dataset from [27]. We used the features
described in §III-A for a fair comparison. Table. IIa (left)
summarizes the two detectors’ performance over the seven
affordance labels considered.

From the results, we can see that S-HMP consistently out-
performs SRF in all three evaluation metrics. The difference
is most significant using the Fwβ measure, which shows that
the sparse codes obtained by S-HMP are able to distinguish
the top ranked affordance class much better than SRF, which
tends to produce weaker responses across multiple affordance
categories. This is not surprising since, unlike S-HMP which
learns a hierarchy of new features, SRF only extracts the
most discriminative combination of the input features. In the
sections that follow, we describe ablation experiments that

demonstrate the contribution of geometric features and how
they help in real-world scenarios with clutter, occlusions and
viewpoint changes.

1) Ablation comparisons: We performed a series of fea-
ture ablations to demonstrate the contribution of each feature
type in improving the results reported above. Table. IIb
shows the influence of additional features over the baseline
smoothed and de-meaned depth features, denoted as Depth,
with respect to the Fwβ measure.

We see that the S-HMP baseline performs very well, and
by learning multiple layers of features with increasing invari-
ance and abstraction, S-HMP is able to extract discriminative
information. Consequently, additional features provide better
but diminishing returns on performance, consistent with the
results in [27]. Additionally, increasing feature dimensional-
ity can make SVM learning more difficult. Although the full
set of features has a slightly lower Fwβ measure, we note that
it has the best performance on ranked measures and clutter.
The SRF, on the other hand, benefits more from the addition
of new features as they introduce more diversity into the
random feature subsets used during training (§III-C). Using
the full feature set the SRF achieves a large improvement
over the ablated counterparts. Interestingly, we notice that
although SI+CV are derived from PCurv, they improve
the results further. This validates that the shape-index and
curvedness measures capture discriminative information not
provided directly by the other features. Considering that the
results in [27] showed that geometric features significantly
outperformed RGB features, we also tested the SRF with
several 2D features which achieved much lower performance.
For example, using raw RGB-D values gives Fwβ of 0.055
for SRF.

2) Performance in clutter and occlusions: In order to test
the performance of the approach in real-world situations
containing clutter, occlusions and viewpoint changes, we
tested our approach over the clutter subset of the RGB-
D Part Affordance Dataset. Table. IIa (right) compares the
performance of S-HMP and SRF using the (Fwβ , R

w
β , τk)

metrics.



(a) Performance over the RGB-D Affordance Dataset. (Left) Non-cluttered subset and (Right) Cluttered subset.

Affordance Non-cluttered subset (single objects) Cluttered subset (multiple objects)
S-HMP (Fwβ , R

w
β , τk) SRF (Fwβ , R

w
β , τk) S-HMP (Fwβ , R

w
β , τk) SRF (Fwβ , R

w
β , τk)

grasp 0.367, 0.149, 0.711 0.314, 0.133, 0.409 0.227, 0.124, 0.583 0.200, 0.122, 0.165
cut 0.373, 0.043, 0.831 0.285, 0.033, 0.798 0.160, 0.065, 0.754 0.072, 0.030, 0.724
scoop 0.415, 0.046, 0.627 0.412, 0.097, 0.559 0.165, 0.083, 0.519 0.114, 0.106, 0.446
contain 0.810, 0.168, 0.814 0.635, 0.142, 0.579 0.437, 0.222, 0.627 0.322, 0.178, 0.316
pound 0.643, 0.035, 0.787 0.429, 0.033, 0.801 0.257, 0.079, 0.609 0.072, 0.023, 0.595
support 0.524, 0.030, 0.717 0.481, 0.039, 0.724 0.297, 0.049, 0.462 0.098, 0.022, 0.509
wrap-grasp 0.767, 0.102, 0.867 0.666, 0.089, 0.821 0.208, 0.109, 0.482 0.156, 0.099, 0.482

Mean 0.557, 0.082, 0.751 0.460, 0.081, 0.643 0.250, 0.105, 0.563 0.165, 0.083, 0.435

(b) Ablation experiments. +x indicates the amount of change over Depth.

Feature Sets S-HMP Fwβ SRF Fwβ
Depth+SNorm+PCurv+SI+CV 0.557 (+0.018) 0.460 (+0.137)

Depth+SNorm+PCurv 0.562 (+0.023) 0.449 (+0.126)

Depth+SNorm 0.547 (+0.008) 0.444 (+0.121)

Depth 0.539 0.323

(c) Results on the Cornell Grasping Dataset.
Method ra % da %
RF 85.3 62.5
SRF 93.5 87.0
SAE [25] 93.7 88.4
S-HMP 95.2 92.0

TABLE II: Full experimental results. See text for details.

We show in Fig. 5 a series of three frames illustrating the
responses of S-HMP and SRF for two specific affordances:
contain and wrap-grasp. Despite changes in viewpoint,
the approaches make reasonable predictions, such as cor-
rectly predicting the inner surfaces of bowls and cups as
contain. S-HMP exhibits precisely localized predictions,
and SRF demonstrates generalization, such as predicting
wrap-grasp on the convex surface of the bowl. From
Table. IIa (right), we note further that although both S-HMP
and SRF’s performance did drop under such challenging
scenarios, the drop in S-HMP is less than SRF, which
indicates that the learned features, unlike those obtained from
SRF are far more robust to viewpoint changes and clutter
than SRF.

3) Cornell Grasping Dataset comparison: We applied
the proposed approaches to the Cornell Grasping Dataset
and compared recognition and detection results to those of
the Sparse Autoencoder (SAE) with a two-stage structured
regularization in [25]. Table. IIc summarizes the recognition
accuracy, ra, and detection accuracy (point-wise), da, of the
SRF, SAE, and S-HMP methods. In order to highlight the
contribution of the structured constraints in the SRF, we
trained a standard random forest (RF) with 20 trees over
the annotated grasping rectangles in the dataset, using the
same feature set of the SAE: RGB + Depth + SNorms.

We note first that using the baseline feature set used in
SAE with a standard RF results only in mediocre perfor-
mance. By adding the structured constraints and the proposed
robust features, the SRF is able to achieve recognition and
detection performances comparable to the deep learning
based SAE. S-HMP outperforms the other approaches by a
large margin, achieving state-of-the-art performance for this
dataset. It is important to note however, that the SRF provides
very reasonable predictions of graspable locations with pixel-
wise accuracy (Fig. 7), within a fraction of the time needed
for inference using SAE (30s) vs. 0.1s in SRF. Such real-time
performance is crucial for practical robotics applications and
we show in the supplementary video an example of real-time

detection over the cluttered RGB-D Affordance Dataset.

Fig. 7: Grasping locations predicted by SRF. (Top) Input RGB-D images
for four example objects. (Bottom) Predicted graspable locations. Notice the
large difference in shape of the graspable regions. Brighter means higher
probability.

VI. CONCLUSION

In this paper, we have presented two methods for associat-
ing affordances with local shape and geometry information.
These methods localize and identify multiple affordances
of tool parts, providing functional information that can be
used by a robot. S-HMP provides accurate results at a high
computational cost, while SRF gives reasonable predictions
in real-time. We have also demonstrated the importance
of geometry for affordance identification, showing the im-
portance of robust geometric features. We also validated
our approaches on an existing dataset, and achieve state-
of-the-art results. Finally, we introduced a new RGB-D
Part Affordance Dataset with ranked affordance labels for 3
scenes and 105 objects which will be made publicly available
for further research.

The work opens up exciting new research directions for
recognizing objects in general. Firstly, we plan to study
and enforce stronger invariants for the features to handle
even more challenging situations. Secondly, we intend to
explore the detection of material properties, which is an
important function of affordance prediction: either via visual
methods or haptics. Finally, the approaches described here
will be implemented onto a robot with manipulators to test
the accuracy of the predictions in real manipulative tasks.
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recognition: Inferring object affordances from human demonstration.
Computer Vision and Image Understanding, 115(1):81–90, 2011.

[20] J. J. Koenderink and A. J. van Doorn. Surface shape and curvature
scales. Image and vision computing, 10(8):557–564, 1992.

[21] P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo. Structured
class-labels in random forests for semantic image labelling. In Proc.
Int’l Conf. on Computer Vision, pages 2190–2197, 2011.

[22] H. S. Koppula, R. Gupta, and A. Saxena. Learning human activities
and object affordances from rgb-d videos. Int’l J. of Robotics Research,
32(8):951–970, 2013.

[23] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-
view rgb-d object dataset. In Proc. IEEE Int’l Conf. on Robotics and
Automation, 2011.

[24] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect
unseen object classes by between-class attribute transfer. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 951–
958, 2009.

[25] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic
grasps. Int’l J. of Robotics Research, 2014.

[26] R. Margolin, L. Zelnik-Manor, and A. Tal. How to evaluate fore-
ground maps? In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 248–255, 2014.

[27] A. Myers, A. Kanazawa, C. Fermüller, and Y. Aloimonos. Affordance
of object parts from geometric features. In Proc. of Robotics: Science
and Systems RGB-D Workshop, 2014.

[28] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In Proc.
European Conf. on Computer Vision, pages 746–760, 2012.

[29] D. Parikh and K. Grauman. Relative attributes. Proc. Int’l Conf. on
Computer Vision, pages 503–510, 2011.

[30] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel
objects using vision. Int’l J. of Robotics Research, 27(2):157–173,
2008.

[31] N. Silberman and R. Fergus. Indoor scene segmentation using a
structured light sensor. In Proc. of the Int’l Conf. on Computer Vision
Workshop on 3D Representation and Recognition, 2011.

[32] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3d object classification. In
Advances in Neural Information Processing Systems, 2012.

[33] L. Stark and K. Bowyer. Function-based generic recognition for
multiple object categories. CVGIP: Image Understanding, 59(1):1–
21, 1994.

[34] M. Stark, P. Lies, M. Zillich, J. Wyatt, and B. Schiele. Functional
object class detection based on learned affordance cues. In Computer
Vision Systems, pages 435–444. Springer, 2008.

[35] Y. Sun, L. Bo, and D. Fox. Attribute based object identification. In
Proc. IEEE Int’l Conf. on Robotics and Automation, pages 2096–2103,
2013.

[36] X. Yu and Y. Aloimonos. Attribute-based transfer learning for object
categorization with zero/one training example. In Proc. European
Conf. on Computer Vision, pages 127–140, 2010.


	Introduction
	Related Work
	Approach
	Robust Geometric Features
	Depth Features
	Surface normals (SNorm)
	Principle curvatures (PCurv)
	Shape-index and curvedness (SI+CV)

	Superpixel Hierarchical Matching Pursuit
	Structured Random Forest

	Experiments
	RGB-D Part Affordance Dataset
	Evaluation Metrics
	Cornell Grasping Dataset Comparison

	Results
	Ablation comparisons
	Performance in clutter and occlusions
	Cornell Grasping Dataset comparison


	Conclusion
	References

